Main index | Section 3 | Options |
#include <libelf.h>
This manual page serves to provide an overview of the functionality in the ELF library. Further information may found in the manual pages for individual ELF(3) functions that comprise the library.
ELF objects have an associated "ELF class" which denotes the natural machine word size for the architecture the object is associated with. Objects for 32 bit architectures have an ELF class of ELFCLASS32. Objects for 64 bit architectures have an ELF class of ELFCLASS64.
ELF objects also have an associated "endianness" which denotes the endianness of the machine architecture associated with the object. This may be ELFDATA2LSB for little-endian architectures and ELFDATA2MSB for big-endian architectures.
ELF objects are also associated with an API version number. This version number determines the layout of the individual components of an ELF file and the semantics associated with these.
An application would work with ELF data in its "native" representation, i.e., using the native byteorder and alignment mandated by the processor the application is running on. The "file" representation of the same data could use a different byte ordering and follow different constraints on object alignment than these native constraints.
Accordingly, the ELF(3) library offers translation facilities ((elf32_xlatetof) 3, elf32_xlatetom(3), elf64_xlatetof(3) and elf64_xlatetom(3)) to and from these representations. It also provides higher-level APIs ((gelf_xlatetof) 3, gelf_xlatetom(3)) that retrieve and store data from the ELF object in a class-agnostic manner.
In order to facilitate working with ELF objects of differing versions, the ELF library requires the application to call the elf_version() function before invoking many of its operations, in order to inform the library of the application's desired working version.
In the current implementation, all three versions have to be EV_CURRENT.
elf_ | Used for class-independent functions. |
elf32_ | Used for functions working with 32 bit ELF objects. |
elf64_ | Used for functions working with 64 bit ELF objects. |
Elf_ | Used for class-independent data types. |
ELF_C_ | Used for command values used in a few functions. These symbols are defined as members of the Elf_Cmd enumeration. |
ELF_E_ | Used for error numbers. |
ELF_F_ | Used for flags. |
ELF_K_ | These constants define the kind of file associated with an ELF descriptor. See elf_kind(3). The symbols are defined by the Elf_Kind enumeration. |
ELF_T_ | These values are defined by the Elf_Type enumeration, and denote the types of ELF data structures that can be present in an ELF object. |
In addition, the library uses symbols with prefixes _ELF and _libelf for its internal use.
Elf | |
An
Elf
descriptor represents an ELF object or an
ar(1)
archive.
It is allocated using one of the
elf_begin()
or
elf_memory()
functions.
An
Elf
descriptor can be used to read and write data to an ELF file.
An
Elf
descriptor can be associated with zero or more
Elf_Scn
section descriptors.
Given an ELF descriptor, the application may retrieve the ELF object's class-dependent "Executable Header" structures using the elf32_getehdr() or elf64_getehdr() functions. A new Ehdr structure may be allocated using the elf64_newehdr() or elf64_newehdr() functions. The "Program Header Table" associated with an ELF descriptor may be allocated using the elf32_getphdr() or elf64_getphdr() functions. A new program header table may be allocated or an existing table resized using the elf32_newphdr() or elf64_newphdr() functions. The Elf structure is opaque and has no members visible to the application. | |
Elf_Data | |
An Elf_Data data structure describes an individual chunk of a ELF file as represented in memory. It has the following application-visible members: | |
uint64_t d_align | |
The in-file alignment of the data buffer within its containing ELF section. This value must be non-zero and a power of two. | |
void *d_buf | |
A pointer to data in memory. | |
uint64_t d_off | |
The offset within the containing section where this descriptor's data would be placed. This field will be computed by the library unless the application requests full control of the ELF object's layout. | |
uint64_t d_size | |
The number of bytes of data in this descriptor. | |
Elf_Type d_type | |
The ELF type (see below) of the data in this descriptor. | |
unsigned int d_version | |
The operating version for the data in this buffer. | |
Elf_Data descriptors are usually used in conjunction with Elf_Scn descriptors.
Elf_Scn | |
Elf_Scn
descriptors represent sections in an ELF object.
These descriptors are opaque and contain no application modifiable
fields.
The Elf_Scn descriptor for a specific section in an ELF object can be retrieved using the elf_getscn() function. The sections contained in an ELF object can be traversed using the elf_nextscn() function. New sections are allocated using the elf_newscn() function. The Elf_Data descriptors associated with a given section can be retrieved using the elf_getdata() function. New data descriptors can be added to a section descriptor using the elf_newdata() function. The untranslated "file" representation of data in a section can be retrieved using the elf_rawdata() function. | |
ELF_T_ADDR | Machine addresses. |
ELF_T_BYTE | Byte data. The library will not attempt to translate byte data. |
ELF_T_CAP | Software and hardware capability records. |
ELF_T_DYN | Records used in a section of type SHT_DYNAMIC. |
ELF_T_EHDR | ELF executable header. |
ELF_T_GNUHASH | |
GNU-style hash tables. | |
ELF_T_HALF | 16-bit unsigned words. |
ELF_T_LWORD | 64 bit unsigned words. |
ELF_T_MOVE | ELF Move records. |
ELF_T_NOTE | ELF Note structures. |
ELF_T_OFF | File offsets. |
ELF_T_PHDR | ELF program header table entries. |
ELF_T_REL | ELF relocation entries. |
ELF_T_RELA | ELF relocation entries with addends. |
ELF_T_SHDR | ELF section header entries. |
ELF_T_SWORD | Signed 32-bit words. |
ELF_T_SXWORD | Signed 64-bit words. |
ELF_T_SYMINFO | |
ELF symbol information. | |
ELF_T_SYM | ELF symbol table entries. |
ELF_T_VDEF | Symbol version definition records. |
ELF_T_VNEED | Symbol version requirement records. |
ELF_T_WORD | Unsigned 32-bit words. |
ELF_T_XWORD | Unsigned 64-bit words. |
The symbol ELF_T_NUM denotes the number of Elf types known to the library.
The following table shows the mapping between ELF section types defined in elf(5) and the types supported by the library.
Section Type | Library Type | Description |
SHT_DYNAMIC | ELF_T_DYN | '.dynamic' section entries. |
SHT_DYNSYM | ELF_T_SYM | Symbols for dynamic linking. |
SHT_FINI_ARRAY | ELF_T_ADDR | Termination function pointers. |
SHT_GNU_HASH | ELF_T_GNUHASH | GNU hash sections. |
SHT_GNU_LIBLIST | ELF_T_WORD | List of libraries to be pre-linked. |
SHT_GNU_verdef | ELF_T_VDEF | Symbol version definitions. |
SHT_GNU_verneed | ELF_T_VNEED | Symbol versioning requirements. |
SHT_GNU_versym | ELF_T_HALF | Version symbols. |
SHT_GROUP | ELF_T_WORD | Section group marker. |
SHT_HASH | ELF_T_HASH | Symbol hashes. |
SHT_INIT_ARRAY | ELF_T_ADDR | Initialization function pointers. |
SHT_NOBITS | ELF_T_BYTE | Empty sections. See elf(5). |
SHT_NOTE | ELF_T_NOTE | ELF note records. |
SHT_PREINIT_ARRAY | ELF_T_ADDR | Pre-initialization function pointers. |
SHT_PROGBITS | ELF_T_BYTE | Machine code. |
SHT_REL | ELF_T_REL | ELF relocation records. |
SHT_RELA | ELF_T_RELA | Relocation records with addends. |
SHT_STRTAB | ELF_T_BYTE | String tables. |
SHT_SYMTAB | ELF_T_SYM | Symbol tables. |
SHT_SYMTAB_SHNDX | ELF_T_WORD | Used with extended section numbering. |
SHT_SUNW_dof | ELF_T_BYTE | Used by dtrace(1). |
SHT_SUNW_move | ELF_T_MOVE | ELF move records. |
SHT_SUNW_syminfo | ELF_T_SYMINFO | Additional symbol flags. |
SHT_SUNW_verdef | ELF_T_VDEF | Same as SHT_GNU_verdef. |
SHT_SUNW_verneed | ELF_T_VNEED | Same as SHT_GNU_verneed. |
SHT_SUNW_versym | ELF_T_HALF | Same as SHT_GNU_versym. |
Section types in the range [ SHT_LOOS, SHT_HIUSER] are otherwise considered to be of type ELF_T_BYTE.
Archive Access | |
elf_getarsym() | Retrieve the archive symbol table. |
elf_getarhdr() | Retrieve the archive header for an object. |
elf_getbase() | Retrieve the offset of a member inside an archive. |
elf_next() | Iterate through an ar(1) archive. |
elf_rand() | Random access inside an ar(1) archive. |
Data Structures | |
elf_getdata() | Retrieve translated data for an ELF section. |
elf_getscn() | Retrieve the section descriptor for a named section. |
elf_ndxscn() | Retrieve the index for a section. |
elf_newdata() | Add a new Elf_Data descriptor to an ELF section. |
elf_newscn() | Add a new section descriptor to an ELF descriptor. |
elf_nextscn() | Iterate through the sections in an ELF object. |
elf_rawdata() | Retrieve untranslated data for an ELF section. |
elf_rawfile() | Return a pointer to the untranslated file contents for an ELF object. |
elf32_getehdr(,)elf64_getehdr() | Retrieve the Executable Header in an ELF object. |
elf32_getphdr(,)elf64_getphdr() | Retrieve the Program Header Table in an ELF object. |
elf32_getshdr(,)elf64_getshdr() | Retrieve the ELF section header associated with an Elf_Scn descriptor. |
elf32_newehdr(,)elf64_newehdr() | Allocate an Executable Header in an ELF object. |
elf32_newphdr(,)elf64_newphdr() | Allocate or resize the Program Header Table in an ELF object. |
Data Translation | |
elf32_xlatetof(,)elf64_xlatetof() | Translate an ELF data structure from its native representation to its file representation. |
elf32_xlatetom(,)elf64_xlatetom() | Translate an ELF data structure from its file representation to a native representation. |
Error Reporting | |
elf_errno() | Retrieve the current error. |
elf_errmsg() | Retrieve a human readable description of the current error. |
Initialization | |
elf_begin() | Opens an ar(1) archive or ELF object given a file descriptor. |
elf_end() | Close an ELF descriptor and release all its resources. |
elf_memory() | Opens an ar(1) archive or ELF object present in a memory arena. |
elf_version() | Sets the operating version. |
IO Control | |
elf_cntl() | |
Manage the association between and ELF descriptor and its underlying file. | |
elf_flagdata() | |
Mark an Elf_Data descriptor as dirty. | |
elf_flagehdr() | |
Mark the ELF Executable Header in an ELF descriptor as dirty. | |
elf_flagphdr() | |
Mark the ELF Program Header Table in an ELF descriptor as dirty. | |
elf_flagscn() | |
Mark an Elf_Scn descriptor as dirty. | |
elf_flagshdr() | |
Mark an ELF Section Header as dirty. | |
elf_setshstrndx() | |
Set the index of the section name string table for the ELF object. | |
elf_update() | |
Recompute ELF object layout and optionally write the modified object back to the underlying file. | |
Queries | |
elf32_checksum(,)elf64_checkum() | |
Compute checksum of an ELF object. | |
elf_getident() | |
Retrieve the identification bytes for an ELF object. | |
elf_getphdrnum() | |
Retrieve the number of program headers in an ELF object. | |
elf_getshdrnum() | |
Retrieve the number of sections in an ELF object. | |
elf_getshdrstrndx() | |
Retrieve the section index of the section name string table in an ELF object. | |
elf_hash() | |
Compute the ELF hash value of a string. | |
elf_kind() | |
Query the kind of object associated with an ELF descriptor. | |
elf32_fsize(,)elf64_fsize() | |
Return the size of the file representation of an ELF type. | |
However, if the application wishes to take complete charge of the layout of the ELF file, it may set the ELF_F_LAYOUT flag on an ELF descriptor using elf_flagelf(3), following which the library will use the data offsets and alignments specified by the application when laying out the file. Application control of file layout is described further in the elf_update(3) manual page.
Gaps in between sections will be filled with the fill character set by function elf_fill().
Conversely the library will not free data that it has not allocated. As an example, an application may call elf_newdata(3) to allocate a new Elf_Data descriptor and can set the d_off member of the descriptor to point to a region of memory allocated using malloc(3). It is the applications responsibility to free this arena, though the library will reclaim the space used by the Elf_Data descriptor itself.
ELF (3) | June 12, 2019 |
Main index | Section 3 | Options |
Please direct any comments about this manual page service to Ben Bullock. Privacy policy.
“ | A typical Unix /bin or /usr/bin directory contains a hundred different kinds of programs, written by dozens of egotistical programmers, each with its own syntax, operating paradigm, rules of use ... strategies for specifying options, and different sets of constraints. | ” |
— The Unix Haters' handbook |