Main index | Section 2 | 日本語 | Options |
#include <sys/mman.h>
After an mlock() system call, the indicated pages will cause neither a non-resident page nor address-translation fault until they are unlocked. They may still cause protection-violation faults or TLB-miss faults on architectures with software-managed TLBs. The physical pages remain in memory until all locked mappings for the pages are removed. Multiple processes may have the same physical pages locked via their own virtual address mappings. A single process may likewise have pages multiply-locked via different virtual mappings of the same physical pages. Unlocking is performed explicitly by munlock() or implicitly by a call to munmap() which deallocates the unmapped address range. Locked mappings are not inherited by the child process after a fork(2).
Since physical memory is a potentially scarce resource, processes are limited in how much they can lock down. The amount of memory that a single process can mlock() is limited by both the per-process RLIMIT_MEMLOCK resource limit and the system-wide "wired pages" limit vm.max_user_wired. vm.max_user_wired applies to the system as a whole, so the amount available to a single process at any given time is the difference between vm.max_user_wired and vm.stats.vm.v_user_wire_count.
If security.bsd.unprivileged_mlock is set to 0 these calls are only available to the super-user.
If the call succeeds, all pages in the range become locked (unlocked); otherwise the locked status of all pages in the range remains unchanged.
[EPERM] | |
security.bsd.unprivileged_mlock is set to 0 and the caller is not the super-user. | |
[EINVAL] | |
The address range given wraps around zero. | |
[ENOMEM] | |
Some portion of the indicated address range is not allocated. There was an error faulting/mapping a page. Locking the indicated range would exceed the per-process or system-wide limits for locked memory. | |
[EPERM] | |
security.bsd.unprivileged_mlock is set to 0 and the caller is not the super-user. | |
[EINVAL] | |
The address range given wraps around zero. | |
[ENOMEM] | |
Some or all of the address range specified by the addr and len arguments does not correspond to valid mapped pages in the address space of the process. | |
[ENOMEM] | |
Locking the pages mapped by the specified range would exceed a limit on the amount of memory that the process may lock. | |
The per-process and system-wide resource limits of locked memory apply to the amount of virtual memory locked, not the amount of locked physical pages. Hence two distinct locked mappings of the same physical page counts as 2 pages aginst the system limit, and also against the per-process limit if both mappings belong to the same physical map.
The per-process resource limit is not currently supported.
MLOCK (2) | May 13, 2019 |
Main index | Section 2 | 日本語 | Options |
Please direct any comments about this manual page service to Ben Bullock. Privacy policy.
“ | Our grievance is not just against Unix itself, but against the cult of Unix zealots who defend and nurture it. They take the heat, disease, and pestilence as givens, and, as ancient shamans did, display their wounds, some self-inflicted, as proof of their power and wizardry. We aim, through bluntness and humor, to show them that they pray to a tin god, and that science, not religion, is the path to useful and friendly technology. | ” |
— The Unix Haters' handbook |